Breaking Down the Door to Emergency Services through Cellular IoT Gateways
- by nlqip
Potential Attacks and Impact
We stumbled upon the issues with cellular IoT devices during our “Hunt for IoT” research of devices that were infected by Mirai. Attackers know how to exploit these systems and are actively monitoring them. Sierra Wireless, one of the largest manufacturers of cellular IoT devices, issued a public statement describing how to secure their devices from Mirai infections. US intelligence agencies have made public the fact that Russia attacks IoT devices to maintain long-term, persistent access for future offensive purposes. It is not a stretch of anyone’s imagination that Russia—or any other adversarial nation-state—could compromise these devices, as well, and use them to their own advantage. But this isn’t just a US issue. These devices are deployed in the same types of systems around the world and can absolutely be used in warfare, terrorist attacks, or by lone actors targeting specific people or businesses.
If a system requires long-range constant connectivity, it’s important. Often critically important. We found many systems used to support human life such as police cars, fire trucks and ambulance fleets that are impacted by this research. Outside of what we already know attackers are using these systems for (such as relaying attacks when the devices are infected with Mirai), they could be used by nefarious hackers, criminals, nation-states, or terrorist groups to:
- Maintain persistent access to spy on people, businesses and operations
- Maintain persistent access to surveil and monitor law enforcement to aid in evasion
- Maintain access to monitor law enforcement activity to aid in ongoing litigation
- Gain control of device commands and redirect, reroute, or delete.
- In warfare or terrorist activities:
- Take offline, effectively disabling the system relying on the cellular modem for operations
- Disrupt the physical activities of a system relying upon commands from the cellular modem.
- Disrupt communications on a wide scale by attacking the entire fleet at once.
“1-800-CRIME-AID”
If we momentarily transport ourselves into the land of television and movies—the land where bad guys have extraordinary abilities to command traffic signals and hijack surveillance systems—we find the scenarios this type of vulnerability opens up.
Infrastructure needs connectivity. Wireless gateways are useful for this. Attached to traffic cameras and traffic lights, they provide municipal workers up-to-the-minute data on and more efficient management of their systems. At the same time, when improperly configured (as we have seen in large numbers), they present an opportunity for an adversarial actor to manipulate the information delivered via the gateway, or even the systems to which they provide access.
Combine that with real-time GPS tracking of a police department’s cruiser fleet and attackers have several of the tools necessary to facilitate a security-system-bypassing, camera-freezing, police-tracking, traffic light-changing heist à la The Italian Job.
Striking the Sentinels
The possibilities quickly took a dark turn. In late 2016 and early 2017, when our research was in its early stages, it was national news that 2016 was an especially fatal year for law enforcement officers. In fact, ambush-style assassinations on police officers were up over 150%. With this dominating much of the national discourse at that time, it wasn’t difficult to see the dangers posed by being able to track police officers in their vehicles, in real time. It is a horrifying thought, and we’ll leave it at that, but a real possibility.
Request Timed Out
Another horrifying yet real scenario involves medical help never making it to the scene, or at least not in any condition to provide aid. It is a tactic that began to emerge as terrorist attacks evolved over the past two decades. Emergency medical personnel en route to save lives become victims themselves, increasing the time before initial victims received help and reducing overall emergency response capacity. The same way police cruisers can be tracked, so can ambulances. The same way police cruisers can be tracked, so can ambulances.
Distributed Denial of Democracy
At this point, it should be crystal clear the dangerous doors this problem opens. And if we take a moment to revisit APTs, and if we’ve been paying attention over the last two years, we know there are concerns about election security and integrity. Disruption of a single emergency call is dangerous enough to merit attention. Surreptitious manipulation of traffic signals combined with disruption of police, fire, and medical systems to suppress voter turnout in key districts merits shouting from the rooftops. It is personal safety as well as a national security issue.
Vigilantes might want to take matters into their own hands like their efforts we saw with Mirai and BrickerBot, however they cannot do this without causing damage to systems that support human life. Vigilante efforts will ultimately hurt people, so they cannot participate in this cleanup. The best-case scenario right now (from a third-party remote access standpoint), is a white hat discovering a vulnerable system and not breaking the law by doing nothing, or breaking the law in an effort to help by changing the default admin password and upgrading the firmware.
This goes beyond DDoS and beyond the exfiltration of data (even though that is a major concern). The second- and third-order effects of these wireless gateways being compromised mean that not only can sensitive information on police, medical, and other networks be exfiltrated, but the systems that first responders rely on to provide life-saving services can be disrupted or otherwise abused.
We’re talking long-range, constant connectivity to critical infrastructure that is used to support human life or can directly impact lives if taken out or otherwise compromised. Police, fire, medical, utility and other municipal fleets impacted, traffic cameras and signal lights compromised.
Take the attack scenarios presented into consideration with the industries and services we know use these types of devices. The Black Hat presentation focused on police cars, ambulances and fire trucks as examples, but these systems are used across virtually every industry that has fleets that need to be managed, or critical systems that need monitoring and constant connectivity. Therefore, the potential impact is big. We have yet to find an industry that isn’t impacted. The following list of potentially impacted industries is what we gathered from simple Google searches:
- Service Providers that provide cellular connectivity to these devices. Verizon is the biggest, followed by AT&T, Telestra, Sprint PCS, Telefonica Spain, Orange Israel, Bell Mobility, Orange France, Telus Mobility, and Rogers Wireless.
- Federal and Local City Governments and Law Enforcement. Many cellular IoT manufacturers champion their customers and use cases on their websites. Sierra Wireless is just one example, which we pointed out earlier in this article.
- Financial. ATMs are a consistent use case on most cellular IoT manufactures websites.
- Retail. Point-of-sale (POS) systems and kiosks are consistently referenced as use cases on cellular IoT manufacturers’ websites.
- Mining, Fossil Fuels, Energy (Refueling Stations including and Hydrogen Refueling Stations), Maritime, Shipping, Transportation, Utility, Hospitality, Digital Signage, and Robotics Industries. All of these industries need long-range, constant connectivity and, in most cases, fleet management, to maintain operational efficiency. As such, all of these industries are often championed as use cases for cellular IoT on manufacturers’ websites.
- Construction. Large construction sites need Internet connectivity for communications before physical lines are laid.
- Broadcasting. Uninterrupted live coverage requires multiple cellular IoT devices, so the broadcasting industry is often championed as a use case on cellular IoT on manufacturers’ websites.
Failure to harden systems that results in remote access compromises is a widespread problem across IoT devices. This report has focused on Sierra Wireless devices, simply because they make up 80% of the cellular IoT market share and therefore appeared most often in our scanning. But the lessons learned and remediation activities apply to all IoT devices whether cellular or wireless. Here are steps every user of these devices should take immediately:
- Change the admin password. Because brute force attacks can still occur, make your admin password as long as possible, preferably 16 characters or more.
- If possible, use ACLs to restrict remote access to a specified management network or leverage VPN tunneling, which is an option with many of these devices.
- Stay up to date with the device’s latest firmware.
- Don’t use default ports, especially telnet, for remote administration! Shift to SSH and use keys instead of passwords.
- Update your device configuration settings. At a minimum:
- Log events! (Log retention capacity limits may apply.)
- Don’t share GPS coordinates or any identifiable information publicly if you can avoid it. In the case of cellular IoT, improper information disclosure could literally put lives in jeopardy.
For purposes of this report, Sierra Wireless has graciously offered to assist customers securing their devices. If you need assistance with any of the items above, reach out to security@sierrawireless.com.
If you are a developer of IoT in general, especially cellular IoT products that are implemented to support critical systems, build in a requirement to reset the administration password upon initial login. Configuration settings should also be set to not disclose confidential information by default. Any settings that makes the device inherently less secure should be configurable by the device owner rather than being set by default.
Conclusion
Researching cyber threats is a critical service to global citizens simply because the manufacturers making these products don’t consider potential future cyber threats into their models. Add the human element (device administration errors will happen) and the reality that nefarious threat actors will eventually find every insecure system on the Internet, it is only a matter of time before a catastrophic cyber attack occurs that leverages cellular gateways. The time to act is now, especially with simple remediation steps to solve already present problems. And with common-sense solutions built into products by vendors, we can help keep weak credentials from having catastrophic consequences.
Please share this story far and wide so action is taken globally, because over 13,500 disclosures have been sent, yet there still have only been two replies. If it weren’t for white hat researchers, we would be finding out about discoveries like this from news media after a terror attack, which is entirely too late. The right thing to do is avoid the risk by remediating now.
Source link
lol
Potential Attacks and Impact We stumbled upon the issues with cellular IoT devices during our “Hunt for IoT” research of devices that were infected by Mirai. Attackers know how to exploit these systems and are actively monitoring them. Sierra Wireless, one of the largest manufacturers of cellular IoT devices, issued a public statement describing how…
Recent Posts
- Arm To Seek Retrial In Qualcomm Case After Mixed Verdict
- Jury Sides With Qualcomm Over Arm In Case Related To Snapdragon X PC Chips
- Equinix Makes Dell AI Factory With Nvidia Available Through Partners
- AMD’s EPYC CPU Boss Seeks To Push Into SMB, Midmarket With Partners
- Fortinet Releases Security Updates for FortiManager | CISA